PROBLEMS FROM WOOLDRIDGE TEXT

10.1, 10.2, 10.3 (in part (b) show that the standard errors of \(\hat{\beta}_{FE} \) and \(\hat{\beta}_{FD} \) are same), 10.4, 10.8 (ignore the questions about testing for serial correlation), 10.14.

Additional Problem 1

Let \(Y_{it} = X'_{it}\theta_0 + C_i + \varepsilon_{it} \), where \(\theta_0 \) is \(p \times 1 \) and \(C \) is an unobserved random variable such that the strict exogeneity condition \(\mathbb{E}(\varepsilon_{it}|X_{i1}, \ldots, X_{iT}, C_i) = 0 \) holds for \(i = 1, \ldots, n \) and \(t = 1, \ldots, T \). Let \(\bar{Y}, \bar{X}, \) and \(\bar{\varepsilon} \) denote variables obtained after subtracting the group means (the within transformation).

(i) Derive the best estimator of \(\theta_0 \) under the assumption that \(\bar{X} \) is contemporaneously uncorrelated with \(\bar{\varepsilon} \).

(ii) What is its asymptotic distribution?

Additional Problem 2

In addition to the assumptions maintained in the previous problem, assume that the random effects hypothesis holds; i.e., \(\mathbb{E}(X_{it}C_i) = 0 \) for every \(i \) and \(t \).

(i) Derive the best estimator of \(\theta_0 \) without making any further assumptions about the distribution of \(C_i \) and \(\varepsilon_{it} \).

(ii) Find its asymptotic distribution.